Odpovědět:
Viz. níže.
Vysvětlení:
Sklon čáry je jen
Například, řekněme
Pak,
Odpovědět:
Vysvětlení:
Rovnice přímky v
#color (blue) "point-slope form" # je.
#color (červená) (bar (ul (| barva (bílá) (2/2) barva (černá) (y-y_1 = m (x-x_1)) barva (bílá) (2/2) |))) # kde m představuje svah a
# (x_1, y_1) "bod na řádku" #
# y-9 = -3 / 4 (x-4) "je v tomto formuláři" # a porovnáním dvou rovnic.
# m = -3 / 4 "a bod na řádku" = (4,9) #
Střed segmentu je (-8, 5). Pokud je jeden koncový bod (0, 1), jaký je druhý koncový bod?
(-16, 9) Volejte AB segment s A (x, y) a B (x1 = 0, y1 = 1) Volejte M střed -> M (x2 = -8, y2 = 5) Máme 2 rovnice : x2 = (x + x1) / 2 -> x = 2x2 - x1 = 2 (-8) - 0 = - 16 y2 = (y + y1) / 2 -> y = 2y2 - y1 = 2 (5 ) - 1 = 9 Druhý koncový bod je A (-16, 9) .A --------------------------- M --- ------------------------ B (x, y) (-8, 5) (0, 1)
Gregory nakreslil na souřadnicovou rovinu obdélník ABCD. Bod A je na hodnotě (0,0). Bod B je na (9,0). Bod C je na hodnotě (9, -9). Bod D je na hodnotě (0, -9). Najděte délku bočního CD?
Boční CD = 9 jednotek Pokud budeme ignorovat y souřadnice (druhá hodnota v každém bodě), je snadné říci, že protože boční CD začíná na x = 9 a končí na x = 0, absolutní hodnota je 9: | 0 - 9 | = 9 Nezapomeňte, že řešení absolutních hodnot jsou vždy kladná Pokud nechápete, proč tomu tak je, můžete také použít vzorec vzdálenosti: P_ "1" (9, -9) a P_ "2" (0, -9) ) V následující rovnici, P_ "1" je C a P_ "2" je D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "
Bod A je na (-2, -8) a bod B je na hodnotě (-5, 3). Bod A se otočí (3pi) / 2 ve směru hodinových ručiček o počátku. Jaké jsou nové souřadnice bodu A a kolik změnilo vzdálenost mezi body A a B?
Počáteční polární souřadnice A, (r, theta) Zadaná počáteční karteziánská souřadnice A, (x_1 = -2, y_1 = -8) Můžeme tedy psát (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Po 3pi / 2 ve směru hodinových ručiček se nová souřadnice A stává x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta) ) = - rsin (3pi / 2-theta) = rcostheta = -2 Počáteční vzdálenost A od B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 konečná vzdálenost mezi novou polohou A ( 8, -2) a B (-5,3) d_2 = sqrt