Řekněme, že mám 480 dolarů na plot v obdélníkové zahradě. Oplocení pro severní a jižní stranu zahrady stojí $ 10 za stopu a oplocení na východní a západní straně stojí $ 15 za stopu. Jak mohu najít rozměry největší možné zahrady?
Zavolejme délku stran N a S x (nohy) a další dva zavoláme y (také ve stopách). Pak budou náklady na plot: 2 * x * $ 10 pro N + S a 2 * y * $ 15 pro E + W Pak bude rovnice pro celkové náklady na plot: 20x + 30y = 480 Oddělíme y: 30y = 480-20x-> y = 16-2 / 3 x Plocha: A = x * y, nahrazující y v rovnici, kterou dostaneme: A = x * (16-2 / 3 x) = 16x-2/3 x ^ 2 Abychom našli maximum, musíme tuto funkci rozlišit a pak nastavit derivaci na 0 A '= 16-2 * 2 / 3x = 16-4 / 3 x = 0 Která řeší x = 12 Substituce v dřívější rovnici y = 16-2 / 3 x = 8 Od
Jak zjistíte všechny body na křivce x ^ 2 + xy + y ^ 2 = 7, kde tečná čára je rovnoběžná s osou x a bod, kde je tečná čára rovnoběžná s osou y?
Tečna je rovnoběžná s osou x, když je sklon (tedy dy / dx) nulový a je rovnoběžný s osou y, když svah (opět dy / dx) přejde do polohy oo nebo -oo. dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Nyní, dy / dx = 0 když nuimerator je 0, za předpokladu, že to také neznamená, že jmenovatel 0. 2x + y = 0 když y = -2x Máme nyní dvě rovnice: x ^ 2 + xy + y ^ 2 = 7 y = -2x Řešit (substitucí) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x ^ 2 = 7 x = + - sqrt (7/3) = + - sqrt21 / 3
Začněte s DeltaOAU, s barem (OA) = a, prodlužte tyč (OU) tak, aby bar (UB) = b, s B na liště (OU). Sestrojte rovnoběžnou čáru k baru (UA) protínající se pruh (OA) na C. Ukažte, že bar (AC) = ab?
Viz vysvětlení. Nakreslete čáru UD rovnoběžnou s AC, jak je znázorněno na obrázku. => UD = AC DeltaOAU a DeltaUDB jsou podobné, => (UD) / (UB) = (OA) / (OU) => (UD) / b = a / 1 => UD = ab => AC = ab " (se ukázala)"