Jaká je hodnota konstanty k, pokud reálná řešení rovnice x ^ 4-kx ^ 3 + 2kx ^ 2 + 2x-20 = 0 jsou x = 2 a x = -1?

Jaká je hodnota konstanty k, pokud reálná řešení rovnice x ^ 4-kx ^ 3 + 2kx ^ 2 + 2x-20 = 0 jsou x = 2 a x = -1?
Anonim

Odpovědět:

#k = 7 #

Vysvětlení:

Vzhledem k: # x ^ 4-kx ^ 3 + 2kx ^ 2 + 2x-20 = 0 #

Náhrada -1 za x:

# (- 1) ^ 4-k (-1) ^ 3 + 2k (-1) ^ 2 + 2 (-1) -20 = 0 #

# 1 + k + 2k -2 - 20 = 0 #

# 3k-21 = 0 #

#k = 7 #

Náhradník 2 za x:

# (2) ^ 4-k (2) ^ 3 + 2k (2) ^ 2 + 2 (2) -20 = 0 #

# 16-8k + 8k + 4-20 = 0 #

#0 = 0#

To znamená, že všechny reálné hodnoty k dají polynomu kořen #x = 2 #, proto dobře vyberte nejvíce omezující, #k = 7 #

Odpovědět:

Viz. níže.

Vysvětlení:

Podle otázky

# x ^ 4 - k x ^ 3 + 2 k x ^ 2 + 2 x - 20 = (x - 2) (x + 1) (a x ^ 2 + b x + c) #

nebo seskupovací koeficienty

# {(2 c-20 = 0), (2 + 2 b + c = 0), (2 a + b - c + 2 k = 0), (a - b - k = 0), (1 - a = 0):} #

Řešení pro # a, b, c, k # získáme

#a = 1, b = -6, c = 10, k = 7 #