Je známo, že rovnice bx ^ 2- (a-3b) x + b = 0 má jeden skutečný kořen. Prokázat, že rovnice x ^ 2 + (a-b) x + (ab-b ^ 2 + 1) = 0 nemá žádné skutečné kořeny.?
Viz. níže. Kořeny pro bx ^ 2- (a-3b) x + b = 0 jsou x = (a - 3 b pmsqrt [a ^ 2 - 6 ab + 5 b ^ 2]) / (2 b) Kořeny budou shodné a reálný jestliže a ^ 2 - 6 ab + 5 b ^ 2 = (a - 5 b) (a - b) = 0 nebo a = b nebo a = 5b Nyní řešení x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 máme x = 1/2 (-a + b pm sqrt [a ^ 2 - 6 ab + 5 b ^ 2-4]) Podmínkou pro komplexní kořeny je ^ 2 - 6 ab + 5 b ^ 2-4 lt 0 nyní a = b nebo a = 5b máme a ^ 2 - 6 ab + 5 b ^ 2-4 = -4 <0 Závěr, pokud bx ^ 2- (a-3b) x + b = 0 má shodné skutečné kořeny, pak x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 bude
Jaká je rovnice ve tvaru svahu ve tvaru svahu a úsek svahu ve tvaru čáry dané sklonem -2, (3, 1)?
(y-1) = -2 (x-3) y = -2x + 7 Forma svahu je: (y-y_1) = m (x-x_1) (y-1) = -2 (x-3) převést jej na úsek svahu: y-1 = -2x + 6 y = -2x + 7 graf {y = -2x + 7 [-7,38, 12,62, -0,96, 9,04]}
Jaká je grafová rovnice této rovnice -4x ^ 2 + 25y ^ 2-50y + 125 = 0?
Socratic má scratchpad rys.Scratchpad obsahuje graf, který umožňuje graf většiny rovnic. Následující graf je grafem -4x ^ 2 + 25y ^ 2-50y + 125 = 0 pomocí funkce grafu: graf {-4x ^ 2 + 25y ^ 2-50y + 125 = 0 [-16,14, 15,89, -7,21, 8.81]}