Odpovědět:
Odpověď je
Vysvětlení:
Vektorová projekce
Produkt dot je
Modul pružnosti
Vektorová projekce je
Jaká je projekce <0, 1, 3> na <0, 4, 4>?
Vektorová projekce je <0,2,2>, skalární projekce je 2sqrt2. Viz. níže. Vzhledem k tomu, veca = <0,1,3> a vecb = <0,4,4>, můžeme najít proj_ (vecb) veca, vektorovou projekci veca na vecb pomocí následujícího vzorce: proj_ (vecb) veca = (( veca * vecb) / (| vecb |)) starb / | vecb | To znamená, že bodový produkt dvou vektorů dělený velikostí vecb, násobený vecb děleno jeho velikostí. Druhou veličinou je vektorová veličina, protože vektor rozdělujeme skalárem. Všimněte si, že rozdělujeme vecb jeho velikostí, abycho
Jaká je projekce (2i -3j + 4k) na (- 5 i + 4 j - 5 k)?
Odpověď je = -7 / 11 〈-5,4, -5〉 Vektorová projekce vecb na veca je = (veca.vecb) / ( veca ) ^ 2veca Produkt dot je veca.vecb = 〈2, -3,4〉. 〈- 5,4, -5〉 = (- 10-12-20) = - 42 Modul veca je = 〈-5,4, -5〉 = sqrt (25 + 16 +25) = sqrt66 Vektorová projekce je = -42 / 66 〈-5,4, -5〉 = -7 / 11 〈-5,4, -5〉
Částice je hozena přes trojúhelník od jednoho konce vodorovné základny a pastva vrchol padá na druhém konci základny. Jestliže alfa a beta jsou základní úhly a theta je úhel projekce, dokažte, že tan theta = tan alfa + tan beta?
Vzhledem k tomu, že částice je hozena s úhlem projekce theta přes trojúhelník DeltaACB od jednoho z jeho konců A horizontální základny AB zarovnané podél osy X a nakonec padá na druhý konec Bof základny, pasoucí se na vrcholu C (x, y) Nechť u je rychlost projekce, T je čas letu, R = AB je horizontální rozsah a t je čas, který částice dosáhne při C (x, y) Horizontální složka rychlosti projekce - > ucostheta Svislá složka rychlosti projekce -> usintheta S ohledem na pohyb pod gravitací bez odporu vzduchu můžeme