Odpovědět:
Vysvětlení:
Pro tento problém použijeme pravidlo kvocientu:
Můžeme také trochu usnadnit rozdělení
První derivace:
# = (d / dx1) + (d / dx ((x-1) (d / dx1) -1 (d / dx (x-1))) / (x-1) ^ 2) #
# = 0 + ((x-1) (0) - (1) (1)) / (x-1) ^ 2 #
# = -1 / (x-1) ^ 2 #
Druhá derivace:
Druhým derivátem je derivát prvního derivátu.
# = - ((x-1) ^ 2 (d / dx1) -1 (d / dx (x-1) ^ 2)) / (x-1) ^ 2 ^ 2 #
# = - ((x-1) ^ 2 (0) -1 (2 (x-1))) / (x-1) ^ 4 #
# = 2 / (x-1) ^ 3 #
Mohli jsme také použít mocenské pravidlo
# = - (x-2) ^ (- 2) #
# = 2 (x-2) ^ (- 3) #
který je stejný jako výsledek, který jsme získali výše.
Nuly funkce f (x) jsou 3 a 4, zatímco nuly druhé funkce g (x) jsou 3 a 7. Jaké jsou nuly funkce y = f (x) / g (x )?
Pouze nula y = f (x) / g (x) je 4. Jako nuly funkce f (x) jsou 3 a 4, tento prostředek (x-3) a (x-4) jsou faktory f (x ). Dále nuly druhé funkce g (x) jsou 3 a 7, což znamená (x-3) a (x-7) faktory f (x). To znamená ve funkci y = f (x) / g (x), ačkoli (x-3) by měl zrušit jmenovatel g (x) = 0 není definován, když x = 3. Není také definován, když x = 7. Proto máme díru v x = 3. a pouze nula y = f (x) / g (x) je 4.
Jaká je druhá odmocnina 3 + druhá odmocnina 72 - druhá odmocnina 128 + druhá odmocnina 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Víme, že 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, takže sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Víme, že 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tak sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Víme, že 128 = 2 ^ 7 , tak sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Zjednodušení 7sqrt (3) - 2sqrt (2)
Jaká je druhá odmocnina 7 + 2 odmocniny 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) První věc, kterou můžeme udělat, je zrušit kořeny na těch, které mají stejné pravomoci. Protože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pro libovolné číslo, můžeme říci, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyní lze 7 ^ 3 přepsat jako 7 ^ 2 * 7, a že 7 ^ 2 se může dostat z kořene! Totéž platí pro 7 ^ 5, ale je přepsáno jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7