Odpovědět:
Centrum je
Eqn.
Vysvětlení:
Nechte dané body. být
Protože se jedná o konce průměru, střední bod.
Proto centrum je
Konečně, eqn. kruhu, se středem
Koncové body průměru kruhu jsou (-7, 3) a (5, 1). Jaký je střed kruhu?
Střed kruhu je ("-" 1,2) Střed kruhu je středem jeho průměru. Střed segmentu čáry je dán vzorcem (x_ "střední", y_ "střední") = ((x _ ("konec" 1) + x _ ("konec" 2)) / 2, (y _ ("konec") 1) + y _ ("konec" 2)) / 2). Zapojení souřadnic koncových bodů dává (x_ "střední", y_ "střední") = (("-" 7 + 5) / 2, (3 + 1) / 2) = (("-" 2) / 2 , 4/2) = ("- 1", 2).
Body (-2,5) a (9, -3) jsou koncové body průměru kruhu, jak zjistíte délku poloměru kruhu?
Poloměr kružnice ~ = 6.80 (viz hrubý diagram níže) Průměr kružnice je dán Pythagorovým teorémem jako barva (bílá) ("XXX") sqrt (8 ^ 2 + 11 ^ 2) barva (bílá) ("XXX ") = sqrt (185 barev (bílá) (" XXX ") ~ = 13.60 (pomocí kalkulačky) Poloměr je poloviční délce průměru.
Body (–9, 2) a (–5, 6) jsou koncové body průměru kruhu Jaká je délka průměru? Jaký je střed C kruhu? Vzhledem k bodu C, který jste našli v části (b), uveďte bod symetrický k C o ose x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 střed, C = (-7, 4) symetrický bod kolem osy x: (-7, -4) Daný: koncové body průměru kruhu: (- 9, 2), (-5, 6) Použijte vzorec vzdálenosti k nalezení délky průměru: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 najít střed: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Použijte pravidlo souřadnic pro odraz kolem osy x (x, y) -> (x, -y): (-7, 4) symetrický bod kolem osy x: -7, -4)