Odpovědět:
Vypočítáno pro každý krok, takže můžete vidět, odkud vše pochází (dlouhá odpověď!)
Vysvětlení:
Jde o pochopení manipulace a co znamená:
Vzhledem k tomu, že:
.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
Nejdřív to musíte pochopit
Musíte to také vědět
Tak napište (1) jako:
Jde o to, že musíme vstřebat
Nejprve se musíme zbavit kořene. Toho lze dosáhnout tak, že vše zapíšete (2) tak, že:
Nyní položíme pravou stranu nad společný jmenovatel
.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
Ale
tak
.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
Náhrada dává:
Potřebujeme
Co je to (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bereme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 + sqrt3) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (zrušit (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - zrušit (2sqrt15) -5 + 2 * 3 + zrušit (sqrt15)) / (12-5) = ( -10 + 12) / 7 =
Jak to zjednodušíte (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Obrovské matematické formátování ...> barva (modrá) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)) = barva (červená) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) / (sqrt (a) +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1)) = barva ( modrá) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -
Pokud x = sqrt3 / 2 pak {sqrt (1 + x) + sqrt (1-x)} / {sqrt (1 + x) - sqrt (1-x)}?
Můžete začít racionalizací: (sqrt (1 + x) + sqrt (1-x)) / (sqrt (1 + x) -sqrt (1-x)) × (sqrt (1 + x) + sqrt (1- x)) / (sqrt (1 + x) + sqrt (1-x)) = = (sqrt (1 + x) + sqrt (1-x)) ^ 2 / (2x) = = ((1 + x) + 2sqrt (1 + x) sqrt (1-x) + (1-x)) / (2x) = = (2 + 2sqrt (1-x ^ 2)) / (2x) = = (1 + sqrt (1 -x ^ 2)) / (x) = Nahrazení: x = sqrt (3) / 2 získáte: = (1 + sqrt (1- 3/4)) / (sqrt (3) / 2) = (1+ 1/2) * (2 / sqrt (3)) = = 3/2 * 2 / sqrt (3) = 3 / sqrt (3) = 3 / sqrt (3) * sqrt (3) / sqrt (3) = sqrt (3) Doufám, že to je to, co jste potřebovali! :-)