Odpovědět:
Koligativní vlastnosti vody.
Vysvětlení:
Přidání soli mění teplotu tání a teplotu varu ve srovnání s čistou vodou. Přidání netěkavé rozpuštěné látky, jako je sůl, je koligativní vlastností, kde identita rozpuštěné látky nezáleží, nýbrž je funkcí počtu částic, které se rozpouštějí v roztoku.
Doufám, že to pomůže!
Voda unikající z obrácené kónické nádrže rychlostí 10 000 cm3 / min a zároveň je voda čerpána do nádrže konstantní rychlostí Pokud má nádrž výšku 6 m a průměr nahoře je 4 m a pokud hladina vody stoupá rychlostí 20 cm / min, když je výška vody 2 m, jak zjistíte, jakou rychlostí se voda čerpá do nádrže?
Nechť V je objem vody v nádrži v cm ^ 3; nechť h je hloubka / výška vody v cm; a r je poloměr povrchu vody (nahoře) v cm. Vzhledem k tomu, že nádrž je obrácený kužel, tak i množství vody. Protože nádrž má výšku 6 ma poloměr v horní části 2 m, podobné trojúhelníky znamenají, že frac {h} {r} = frac {6} {2} = 3 tak, že h = 3r. Objem invertovaného kužele vody je pak V = f {1} {3} r = {r} {3}. Nyní rozlišujeme obě strany s ohledem na čas t (v minutách), abychom získali frac {dV} {dt} = 3 pi r ^ {2} cdrac {dr} {dt} (pravidlo řetězu se
'L se mění společně jako a druhá odmocnina b, a L = 72 když a = 8 a b = 9. Najít L když a = 1/2 a b = 36? Y se mění společně jako kostka x a druhá odmocnina w, a Y = 128, když x = 2 a w = 16. Najděte Y, když x = 1/2 a w = 64?
L = 9 "a" y = 4> "počáteční příkaz je" Lpropasqrtb "k převodu na rovnici násobenou k konstantou" "variace" rArrL = kasqrtb "k nalezení k použijte dané podmínky" L = 72 ", když "a = 8" a "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" rovnice je "barva (červená) (bar (ul (| barva (bílá) ( 2/2) barva (černá) (L = 3asqrtb) barva (bílá) (2/2) |)) "když" a = 1/2 "a" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 barva (modrá) "
Jaká je rychlost změny šířky (ve stopách / s), když je výška 10 stop, pokud výška v tomto okamžiku klesá rychlostí 1 ft / sec.A obdélník má jak měnící se výšku, tak měnící se šířku , ale výška a šířka se mění tak, že plocha obdélníku je vždy 60 čtverečních stop?
Rychlost změny šířky s časem (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" So (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) So (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Takže když h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"