Odpovědět:
Jsou-li všechna místa otočena do pódia a nejsou v nějakém kruhu:
# 2 ^ 3 xx 3! = 48 #
Vysvětlení:
Za předpokladu, že všechna sedadla jsou otočena do pódia a ne do nějakého kruhu, jsou zde tři určené dvojice sedadel.
Tyto tři páry mohou být přiřazeny k těmto třem párům sedadel
Pak může být každý pár samostatně usazen v páru sedadel
Celkový počet způsobů, jakými mohou páry sedět, je tedy:
#2^3 * 3! = 8 * 6 = 48#
Majitel stereo obchodu chce inzerovat, že má na skladě mnoho různých zvukových systémů. Obchod obsahuje 7 různých CD přehrávačů, 8 různých přijímačů a 10 různých reproduktorů. Kolik různých zvukových systémů může vlastník inzerovat?
Majitel může inzerovat celkem 560 různých zvukových systémů! Způsob, jak o tom přemýšlet, je, že každá kombinace vypadá takto: 1 Reproduktor (systém), 1 přijímač, 1 přehrávač CD Pokud bychom měli pouze 1 možnost pro reproduktory a přehrávače CD, ale stále máme 8 různých přijímačů, pak by to bylo 8 kombinací. Pokud jsme pouze pevné reproduktory (předstírat, že je k dispozici pouze jeden systém reproduktorů), pak můžeme pracovat odtud: S, R_1, C_1 S, R_1, C_2 S, R_1, C_3 ... S, R_1, C_8 S , R_2, C_1 ... S, R_7, C_8 Nebudu psát každ
K dispozici je 5 karet. Na těchto kartách je napsáno 5 kladných celých čísel (může být různé nebo stejné), jedna na každé kartě. Součet čísel na každé dvojici karet. jsou jen tři různé součty 57, 70, 83. Největší celé číslo napsané na kartě?
Kdyby bylo na 5 karet napsáno 5 různých čísel, pak by celkový počet různých párů byl "5C_2 = 10 a my bychom měli 10 různých součtů." Ale máme jen tři různé součty. Pokud máme pouze tři různá čísla, můžeme získat tři tři různé páry, které poskytují tři různé součty. Jejich počet musí tedy být tři různá čísla na 5 kartách a možnosti jsou (1) buď každé ze dvou čísel ze tří se opakuje jednou nebo (2) jeden z těchto tří opakování se opakuje třikrát. Získané sou