Jaká je derivace f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?

Jaká je derivace f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?
Anonim

Odpovědět:

Použijte pravidlo pravidla a řetězec. Odpověď je:

#f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) #

Jedná se o zjednodušenou verzi. Vidět Vysvětlení sledovat, do jaké míry může být přijata jako derivát.

Vysvětlení:

#f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 #

#f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- (lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 #

#f '(x) = ((3x ^ 2-2lnx * (lnx)') * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 #

#f '(x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 #

V této podobě je to skutečně přijatelné. Pro další zjednodušení:

#f '(x) = ((3x ^ 2-2lnx / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 2 / x) / (lnx ^ 2) ^ 2 #

#f '(x) = (3x ^ 2lnx ^ 2-2lnx / xlnx ^ 2-x ^ 3 * 2 / x + (lnx) ^ 2 * 2 / x) / (lnx ^ 2) ^ 2 #

#f '(x) = (3x ^ 2lnx ^ 2-2lnx / xlnx ^ 2-x ^ 3 * 2 / x + (lnx) ^ 2 * 2 / x) / (lnx ^ 2) ^ 2 #

#f '(x) = (3x ^ 3lnx ^ 2-2lnxlnx ^ 2-x ^ 3 * 2 + (lnx) ^ 2 * 2) / (x (lnx ^ 2) ^ 2) # 2

#f '(x) = (3x ^ 3lnx ^ 2-4 (lnx) ^ 2-2x ^ 3 + 2 (lnx) ^ 2) / (x (lnx ^ 2) ^ 2) # 2

#f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) #