Odpovědět:
Použijte pravidlo pravidla a řetězec. Odpověď je:
Jedná se o zjednodušenou verzi. Vidět Vysvětlení sledovat, do jaké míry může být přijata jako derivát.
Vysvětlení:
V této podobě je to skutečně přijatelné. Pro další zjednodušení:
Jaká je první a druhá derivace y = x ^ 4 - 6x ^ 2 + 8x + 8?
Y '' = 12x ^ 2-12 V daném cvičení je derivace tohoto výrazu založená na rozlišení mocenského pravidla, které říká: barva (modrá) (dx ^ n / dx = nx ^ (n-1)) První derivace: y = x ^ 4-6x ^ 2 + 8x + 8 y '= 4x ^ 3-12x + 8 Druhá derivace: y' '= 12x ^ 2-12
Jaká je první derivace a druhá derivace 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)"
Jaká je derivace lnx ^ lnx?
= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x