Odpovědět:
Vysvětlení:
Chcete-li získat rozsah, vyhodnoťte hodnotu g (x) pro hodnoty v doméně.
# • g (1) = (4xx1) -12 = 4-12 = barva (červená) (- 8) #
# • g (3) = (4xx3) -12 = 12-12 = barva (červená) (0) #
# • g (5) = (4xx5) -12 = 20-12 = barva (červená) (8) #
# • g (7) = (4xx7) -12 = 28-12 = barva (červená) (16) #
#rArr "rozsah" - {- 8,0,8,16} #
Nechť je doména f (x) [-2,3] a rozsah [0,6]. Co je doména a rozsah f (-x)?
Doména je interval [-3, 2]. Rozsah je interval [0, 6]. Přesně jako je to není funkce, protože její doména je jen číslo -2,3, zatímco její rozsah je interval. Ale za předpokladu, že je to jen překlep a skutečná doména je interval [-2, 3], je to následovně: Nechť g (x) = f (-x). Protože f vyžaduje, aby jeho nezávislá proměnná brala hodnoty pouze v intervalu [-2, 3], -x (záporné x) musí být v rozsahu [-3, 2], což je doména g. Protože g získává svou hodnotu prostřednictvím funkce f, její rozsah zůstává s
Jaký je celkový termín pro kovalentní, iontové a kovové vazby? (například dipólové, vodíkové a londýnské rozptylové vazby se nazývají van der waal force) a také jaký je rozdíl mezi kovalentními, iontovými a kovovými vazbami a van der waal sílami?
Ve skutečnosti neexistuje celkový termín pro kovalentní, iontové a kovové vazby. Interakce dipólu, vodíkové vazby a londonské síly jsou všechny popisující slabé síly přitažlivosti mezi jednoduchými molekulami, proto je můžeme seskupit dohromady a nazývat je buď mezimolekulárními silami, nebo někteří z nás by je mohli nazvat Van der Waalsovy síly. Vlastně mám video lekci srovnávající různé typy intermolekulárních sil. Pokud se zajímáte, zkontrolujte to. Kovové vazby jsou
Jestliže f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1), a x! = - 1, pak co by f (g (x)) se rovnal? g (f (x))? f ^ -1 (x)? Jaká by byla doména, rozsah a nuly pro f (x)? Jaká by byla doména, rozsah a nuly pro g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}