Odpovědět:
Vysvětlení:
Jako kdyby
pomocí tohoto vzorce a pokud
Odpovědět:
Vysvětlení:
My máme
Můžeme použít řetězové pravidlo, které uvádí, že pro funkci
Tady,
Ale zde,
Tak
Nyní máme:
Graf funkce f (x) = (x + 2) (x + 6) je uveden níže. Jaké prohlášení o funkci je pravdivé? Funkce je kladná pro všechny reálné hodnoty x, kde x> –4. Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Nuly funkce f (x) jsou 3 a 4, zatímco nuly druhé funkce g (x) jsou 3 a 7. Jaké jsou nuly funkce y = f (x) / g (x )?
Pouze nula y = f (x) / g (x) je 4. Jako nuly funkce f (x) jsou 3 a 4, tento prostředek (x-3) a (x-4) jsou faktory f (x ). Dále nuly druhé funkce g (x) jsou 3 a 7, což znamená (x-3) a (x-7) faktory f (x). To znamená ve funkci y = f (x) / g (x), ačkoli (x-3) by měl zrušit jmenovatel g (x) = 0 není definován, když x = 3. Není také definován, když x = 7. Proto máme díru v x = 3. a pouze nula y = f (x) / g (x) je 4.
Jaká je první derivace a druhá derivace 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(první derivace)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivace)"