Odpovědět:
Vysvětlení:
Všimněte si prosím, že directrix je vodorovná čára
Parabola je tedy typ, který se otevírá směrem nahoru nebo dolů; vertexová forma rovnice pro tento typ je:
Kde
Souřadnice x vrcholu je stejná jako souřadnice x fokusu:
Nahradit
Souřadnice y vrcholu je na půli cesty mezi přímkou a ohniskem:
Nahradit
Rovnice k nalezení hodnoty
Nahradit
Zjednodušte zlomek:
Rozbalte čtverec:
Rozdělte zlomek:
Kombinovat podobné výrazy:
Odpovědět:
Vysvětlení:
To vyřešíme Problém pomocí následujícího Focus-Directrix
Vlastnost (FDP) z Parabola.
FDP: Jakýkoliv bod na a Parabola je stejně vzdálený od
Soustředit se a Directrix.
Nechte to
Soustředit se a Directrix z Parabola, řekněme S.
Nechat,
Potom pomocí Vzorec vzdálenosti, máme, vzdálenost,
Vím, že
Podle FDP,
tak jako Respektováno Douglas K. Pane již odvozen!
Užijte si matematiku!
Jaká je rovnice ve standardní formě paraboly se zaměřením na (-10,8) a přímkou y = 9?
Rovnice paraboly je (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) Jakýkoliv bod (x, y) na parabola je ekvidistantní od fokusu F = (- 10,8 ) a directrix y = 9 Proto, sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = (y- 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) graf {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Jaká je rovnice ve standardní formě paraboly se zaměřením na (10, -9) a přímkou y = -14?
Y = x ^ 2 / 10-2x-3/2 z daného fokusu (10, -9) a rovnice directrix y = -14, vypočítat pp = 1/2 (-9--14) = 5/2 vypočítat vrchol (h, k) h = 10 a k = (- 9 + (- 14)) / 2 = -23 / 2 Vrchol (h, k) = (10, -23/2) Použijte tvar vrcholu (xh ) ^ 2 = + 4p (yk) pozitivní 4p, protože se otevírá nahoru (x-10) ^ 2 = 4 * (5/2) (y - 23/2) (x-10) ^ 2 = 10 (y + 23/2) x ^ 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 graf y = x ^ 2 / 10-2x- 3/2 a directrix y = -14 graf {(yx ^ 2/10 + 2x + 3/2) (y + 14) = 0 [-35,35, -25,10]}
Jaká je rovnice ve standardní formě paraboly se zaměřením na (-10, -9) a přímkou y = -4?
Rovnice paraboly je y = -1/10 (x + 10) ^ 2 -6,5 Fokus je na (-10, -9) Directrix: y = -4. Vrchol je ve středu mezi ohniskem a přímkou. Vrchol je tedy (-10, (-9-4) / 2) nebo (-10, -6,5) a parabola se otevírá směrem dolů (a = -ive) Rovnice paraboly je y = a (xh) ^ 2 = k nebo y = a (x - (- 10)) ^ 2+ (-6,5) nebo y = a (x + 10) ^ 2 -6,5 kde (h, k) je vrchol. Vzdálenost mezi vrcholem a přímkou, d = 6,5-4,0 = 2,5 = 1 / (4 | a |):. a = -1 / (4 * 2,5) = -1/10 Tudíž rovnice paraboly je y = -1/10 (x + 10) ^ 2 -6,5 graf {-1/10 (x + 10) ^ 2 - 6,5 [-40, 40, -20, 20]} [Ans]