Odpovědět:
Vysvětlení:
z daného zaměření
vypočítat vrchol
Vrchol
Použijte formu vertexu
grafu
graf {(y-x ^ 2/10 + 2x + 3/2) (y + 14) = 0 -35,35, -25,10}
Jaká je rovnice ve standardní formě paraboly se zaměřením na (-10,8) a přímkou y = 9?
Rovnice paraboly je (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) Jakýkoliv bod (x, y) na parabola je ekvidistantní od fokusu F = (- 10,8 ) a directrix y = 9 Proto, sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = (y- 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) graf {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Jaká je rovnice ve standardní formě paraboly se zaměřením na (-10, -9) a přímkou y = -4?
Rovnice paraboly je y = -1/10 (x + 10) ^ 2 -6,5 Fokus je na (-10, -9) Directrix: y = -4. Vrchol je ve středu mezi ohniskem a přímkou. Vrchol je tedy (-10, (-9-4) / 2) nebo (-10, -6,5) a parabola se otevírá směrem dolů (a = -ive) Rovnice paraboly je y = a (xh) ^ 2 = k nebo y = a (x - (- 10)) ^ 2+ (-6,5) nebo y = a (x + 10) ^ 2 -6,5 kde (h, k) je vrchol. Vzdálenost mezi vrcholem a přímkou, d = 6,5-4,0 = 2,5 = 1 / (4 | a |):. a = -1 / (4 * 2,5) = -1/10 Tudíž rovnice paraboly je y = -1/10 (x + 10) ^ 2 -6,5 graf {-1/10 (x + 10) ^ 2 - 6,5 [-40, 40, -20, 20]} [Ans]
Jaká je rovnice ve standardní formě paraboly se zaměřením na (11, -5) a přímkou y = -19?
Y = 1 / 28x ^ 2-11 / 14x-215/28> "pro libovolný bod" (x, y) "na parabola" "fokus a directrix jsou ekvidistantní" barva (modrá) "pomocí vzorce vzdálenosti" sqrt " ((x-11) ^ 2 + (y + 5) ^ 2) = | y + 19 | barva (modrá) "pravoúhlé obě strany" (x-11) ^ 2 + (y + 5) ^ 2 = (y + 19) ^ 2 rArrx ^ 2-22x + 121cancel (+ y ^ 2) + 10y + 25 = zrušit (y ^ 2) + 38y + 361 rArr-28y = -x ^ 2 + 22x + 215 rArry = 1 / 28x ^ 2-11 / 14x-215/28