Jak implicitně rozlišujete 2x / y = ysqrt (x ^ 2 + y ^ 2) -x?

Jak implicitně rozlišujete 2x / y = ysqrt (x ^ 2 + y ^ 2) -x?
Anonim

Odpovědět:

# dy / dx = - (yx (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1) / (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) + y ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2)) #

Vysvětlení:

Dobře, tohle je velmi dlouhá. Budu počítat každý krok, aby to bylo jednodušší, a také jsem nekombinoval kroky, abyste věděli, co se děje.

  1. Začít s:

    # 2xy ^ -1 = y (x ^ 2 + y ^ 2) ^ (1/2) -x #

Nejdřív to vezmeme # d / dx # každého termínu:

2. # d / dx 2xy ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) - d / dx x #

3. # d / dx 2x y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + yd / dx (x ^ 2 + y ^ 2) ^ (1/2) - d / dx x #

4. # 2y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (-1/2)) / 2d / dx x ^ 2 + y ^ 2 -1 #

5. # 2y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (-1/2)) / 2 (d / dx x ^ 2 + d / dx y ^ 2) - 1 #

6. # 2y ^ -1 + xd / dx y ^ -1 = d / dx y (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (-1/2)) / 2 (2x + d / dx y ^ 2) - 1 #

Teď používáme # d / dx = d / dy * dy / dx #:

7. # 2y ^ -1-dy / dxxy ^ -2 = dy / dx (x ^ 2 + y ^ 2) ^ (1/2) + (y (x ^ 2 + y ^ 2) ^ (- 1/2)) / 2 (2x + dy / dx2y) -1 #

8. Nyní změníme uspořádání:

# -dy / dx (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) = yx (x ^ 2 + y ^ 2) ^ (- 1/2) + dy / dxy ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1 #

9. # -dy / dx (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) + y ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2)) = yx (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1 #

10. # dy / dx = - (yx (x ^ 2 + y ^ 2) ^ (- 1/2) -1-2y ^ -1) / (xy ^ -2- (x ^ 2 + y ^ 2) ^ (1/2) + y ^ 2 (x ^ 2 + y ^ 2) ^ (- 1/2)) #