# 9 = e ^ (y ^ 2-y) / e ^ x + y - xy #
# 9 = e ^ (y ^ 2-y) * e ^ (- x) + y - xy #
# 9 = e ^ (y ^ 2-y-x) + y - xy #
Rozlišujte s ohledem na x.
Derivace exponenciálu je sama o sobě časem derivace exponentu. Pamatujte si, že kdykoliv rozlišujete něco, co obsahuje y, řetězové pravidlo vám dává faktor y '.
# 0 = e ^ (y ^ 2-y-x) (2yy '-y'-1) + y' - (xy '+ y) #
# 0 = e ^ (y ^ 2-y-x) (2yy '-y'-1) + y' - xy'-y #
Teď vyřešte y '. Zde je začátek:
# 0 = 2yy'e ^ (y ^ 2-y-x) -y'e ^ (y ^ 2-y-x) -e ^ (y ^ 2-y-x) + y '- xy'-y #
Získejte všechny výrazy, které mají y 'na levé straně.
# -2yy'e ^ (y ^ 2-y-x) + y'e ^ (y ^ 2-y-x) - y '+ xy' = - e ^ (y ^ 2-y-x) -y #
Faktor mimo y '.
Rozdělte obě strany podle toho, co je v závorkách za faktorem.