Odpovědět:
Existuje několik definic spojité funkce, takže vám dávám několik …
Vysvětlení:
Velmi hrubě řečeno, spojitá funkce je funkce, jejíž graf lze kreslit, aniž byste museli zvednout pero z papíru. Nemá žádné diskontinuity (skoky).
Mnohem více formálně:
Li
To je spíš ústa, ale v podstatě to znamená
Zde je další definice:
Li
To je, pokud
Předpokládejme, že X je spojitá náhodná veličina, jejíž funkce hustoty pravděpodobnosti je dána vztahem: f (x) = k (2x - x ^ 2) pro 0 <x <2; 0 pro všechny ostatní x. Jaká je hodnota k, P (X> 1), E (X) a Var (X)?
K = 3/4 P (x> 1) = 1/2 E (X) = 1 V (X) = 1/5 K nalezení k používáme int_0 ^ 2f (x) dx = int_0 ^ 2k (2x-x ^ 2) dx = 1:. k [2x ^ 2/2-x ^ 3/3] _0 ^ 2 = 1 k (4-8 / 3) = 1 => 4 / 3k = 1 => k = 3/4 Pro výpočet P (x> 1) ), používáme P (X> 1) = 1-P (0 <x <1) = 1-int_0 ^ 1 (3/4) (2x-x ^ 2) = 1-3 / 4 [2x ^ 2 / 2-x ^ 3/3] _0 ^ 1 = 1-3 / 4 (1-1 / 3) = 1-1 / 2 = 1/2 Pro výpočet E (X) E (X) = int_0 ^ 2xf (x ) dx = int_0 ^ 2 (3/4) (2x ^ 2-x ^ 3) dx = 3/4 [2x ^ 3/3-x ^ 4/4] _0 ^ 2 = 3/4 (16 / 3- 16/4) = 3/4 * 16/12 = 1 Pro výpočet V (X) V (X) = E (X ^ 2) - (E (X)) ^ 2 = E (X ^ 2
Graf funkce f (x) = (x + 2) (x + 6) je uveden níže. Jaké prohlášení o funkci je pravdivé? Funkce je kladná pro všechny reálné hodnoty x, kde x> –4. Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Funkce je záporná pro všechny reálné hodnoty x, kde –6 <x <–2.
Nechť f je funkce, která (níže). Co musí být pravda? I. f je spojitá při x = 2 II. f je diferencovatelný při x = 2 III. Derivace f je spojitá při x = 2 (A) I (B) II (C) I & II (D) I & III (E) II & III
(C) Zaznamenávat, že funkce f je rozlišitelný v bodě x_0 jestliže lim_ (h-> 0) (f (x_0 + h) -f (x_0)) / h = L dané informace účinně je že f je differentiable u 2 t a že f '(2) = 5. Nyní, když se podíváme na tvrzení: I: Pravda Rozlišitelnost funkce v určitém bodě znamená její kontinuitu v tomto bodě. II: True Daná informace odpovídá definici rozlišitelnosti při x = 2. III: False Derivace funkce není nutně spojitá, klasickým příkladem je g (x) = {(x ^ 2sin (1 / x), pokud x! = 0), (0 pokud x = 0):}, který je diferencovateln