Data:-
Počáteční rychlost
Konečná rychlost
Čas
Akcelerace
Sol: -
Víme, že:
Rychlost zrychlení je tedy
Vozík valící se po svahu po dobu 5,0 sekund má zrychlení 4,0 m / s2.Pokud má vozík počáteční rychlost 2,0 m / s, jaká je jeho konečná rychlost?
22 ms ^ -1 Použití v = u + at (všechny symboly mají svůj konvenční význam) Zde u = 2ms ^ -1, t = 5, a = 4ms ^ -2 So, v = 2 + 4 * 5 = 22ms ^ -1
Žena na kole zrychluje od odpočinku konstantní rychlostí po dobu 10 sekund, až se kolo pohybuje na 20m / s. Udržuje tuto rychlost po dobu 30 vteřin, pak brzdí, aby zpomalila konstantní rychlostí. Kolo se zastaví o 5 sekund později.
"Část a) zrychlení" a = -4 m / s ^ 2 "Část b) celková ujetá vzdálenost je" 750 mv = v_0 + při "části a) V posledních 5 sekundách máme:" 0 = 20 + 5 a = > a = -4 m / s ^ 2 "Část b)" "V prvních 10 sekund máme:" 20 = 0 + 10 a => a = 2 m / s ^ 2 x = v_0 t + at ^ 2 / 2 => x = 0 t + 2 * 10 ^ 2/2 = 100 m "V příštích 30 sekundách máme konstantní rychlost:" x = vt => x = 20 * 30 = 600 m "V posledních 5 sekundách mají: "x = 20 * 5 - 4 * 5 ^ 2/2 = 50
Pokud má objekt s rovnoměrným zrychlením (nebo zpomalením) rychlost 3 m / s při t = 0 a pohybuje se celkem 8 m t = 4, jaká byla rychlost zrychlení objektu?
Zpomalení -0,25 m / s ^ 2 V čase t_i = 0 mělo počáteční rychlost v_i = 3m / s V čase t_f = 4 bylo zakryto 8 m So v_f = 8/4 v_f = 2m / s Určuje se rychlost zrychlení od a = (v_f-v_i) / (t_f-t_i) a = (2-3) / (4-0) a = -1 / 4m / s ^ 2 a = -0,25 m / s ^ 2 Jako a je záporný bereme to jako zpomalení -0,25 m / s ^ 2 Cheers