Odpovědět:
Vysvětlení:
Jak můžete použít binomický teorém k rozšíření (x + 1) ^ 4?
X ^ 4 + 4x ^ 3 + 6x ^ 2 + 4x + 1 binomická věta uvádí: (a + b) ^ 4 = a ^ 4 + 4a ^ 3b + 6a ^ 2b ^ 2 + 4ab ^ 3 + b ^ 4 zde a = x a b = 1 Dostaneme: (x + 1) ^ 4 = x ^ 4 + 4x ^ 3 (1) + 6x ^ 2 (1) ^ 2 + 4x (1) ^ 3 + (1) ^ 4 (x + 1) ^ 4 = x ^ 4 + 4x ^ 3 + 6x ^ 2 + 4x + 1
Jak mohu použít Pascalův trojúhelník k rozšíření binomického (d-5y) ^ 6?
Zde je video o použití Pascalova trojúhelníku pro expanzi Binomial SMARTERTEACHER YouTube
Použijte binomický teorém k rozšíření (x + 7) ^ 4 a vyjádřete výsledek ve zjednodušené formě?
2401 + 1372x + 294x ^ 2 + 28x ^ 3 + x ^ 4 Pomocí binomické věty můžeme vyjádřit (a + bx) ^ c jako rozšířenou množinu x výrazů: (a + bx) ^ c = součet (n = 0) ^ c (c!) / (n! (cn)!) a ^ (cn) (bx) ^ n Zde máme (7 + x) ^ 4 Takže, abychom rozbalili jsme: (4!) / (0 ! (4-0)!) 7 ^ (4-0) x ^ 0 + (4!) / (1! (4-1)!) 7 ^ (4-1) x ^ 1 + (4!) / (2! (4-2)!) 7 ^ (4-2) x ^ 2 + (4!) / (3! (4-3)!) 7 ^ (4-3) x ^ 3 + (4! ) / (4! (4-4)!) 7 ^ (4-4) x ^ 4 (4!) / (0! (4-0)!) 7 ^ 4x ^ 0 + (4!) / (1 ! (4-1)!) 7 ^ 3x ^ 1 + (4!) / (2! (4-2)!) 7 ^ 2x ^ 2 + (4!) / (3! (4-3)!) 7x ^ 3 + (4!) / (4! (4-4)!) 7 ^ 0x ^ 4 (4!) / (0!