Odpovědět:
Vysvětlení:
S je číslo, které přibližujete jeho kořen sqaure. V tomto případě
To, co to znamená a jak se používá:
Nejdřív si vezměte odhad, jaká by mohla být druhá odmocnina 82?
druhá odmocnina 81 je 9, takže musí být více než 9 vpravo?
Náš odhad bude
Vložení 9.2 jako "x" do vzorce nám dá
Toto bude další číslo, které vložíme do rovnice. To proto, že jsme začali s odhadem 9,2 =
Řekněme, že jsme provedli stejný výpočet 100 krát! Pak bychom měli
Dost mluvení, pojďme udělat nějaké skutečné výpočty!
Začneme s naším odhadem
Nyní udělejte totéž s novým číslem:
Udělejme to naposledy:
To znamená
A tady to máte!
Promiň, jestli všechny mé rozhovory byly nepříjemné. Snažil jsem se to vysvětlit do hloubky a jednoduchým způsobem, což je vždy příjemné, pokud nejste obeznámeni s určitou oblastí matematiky. Nevidím, proč někteří lidé musí být při vysvětlení matematiky tak nóbl:)
Odpovědět:
Vysvětlení:
Primární faktorizace
#82 = 2*41#
Protože neexistují žádné čtvercové faktory,
Všimněte si však, že
Protože toto je formy
#sqrt (82) = 9; bar (18) = 9 + 1 / (18 + 1 / (18 + 1 / (18 + 1 / (18 + …)))) # #
Obecněji:
#sqrt (n ^ 2 + 1) = n; bar (2n) = n + 1 / (2n + 1 / (2n + 1 / (2n + 1 / (2n + …)))) #)
Obecněji:
#sqrt (n ^ 2 + m) = n + m / (2n + m / (2n + m / (2n + m / (2n + …)))) #)
V každém případě můžeme použít pokračující zlomek k získání racionálních aproximací
Například:
#sqrt (82) ~ ~ 9; 18 = 9 + 1/18 = 163/18 = 9,0bar (5) #
#sqrt (82) ~ 9; 18,18 = 9 + 1 / (18 + 1/18) = 2943/325 = 9,05bar (538461) #
#sqrt (82) ~ 9; 18,18,18 = 9 + 1 / (18 + 1 / (18 + 1/18)) = 53137/5868 ~ ~ 9,05538513974 #
Kalkulačka mi říká, že:
#sqrt (82) ~~ 9.0553851381374 #
Takže můžete vidět, že naše aproximace jsou přesné na přibližně tolik platných číslic jako celkový počet číslic v kvocientu.
Co je [5 (druhá odmocnina 5) + 3 (druhá odmocnina 7)] / [4 (druhá odmocnina 7) - 3 (druhá odmocnina 5)]?
(159 + 29sqrt (35)) / 47 barev (bílá) ("XXXXXXXX") za předpokladu, že jsem neprovedl žádné aritmetické chyby (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt) (7) - 3 (sqrt (5)) Racionalizujte jmenovatele vynásobením konjugátem: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Jaká je druhá odmocnina 3 + druhá odmocnina 72 - druhá odmocnina 128 + druhá odmocnina 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Víme, že 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, takže sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Víme, že 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tak sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Víme, že 128 = 2 ^ 7 , tak sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Zjednodušení 7sqrt (3) - 2sqrt (2)
Jaká je druhá odmocnina 7 + 2 odmocniny 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) První věc, kterou můžeme udělat, je zrušit kořeny na těch, které mají stejné pravomoci. Protože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pro libovolné číslo, můžeme říci, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyní lze 7 ^ 3 přepsat jako 7 ^ 2 * 7, a že 7 ^ 2 se může dostat z kořene! Totéž platí pro 7 ^ 5, ale je přepsáno jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7