Poločas rozpadu určitého radioaktivního materiálu je 75 dnů. Počáteční množství materiálu má hmotnost 381 kg. Jak píšete exponenciální funkci, která modeluje rozpad tohoto materiálu a kolik radioaktivního materiálu zůstává po 15 dnech?
Poločas rozpadu: y = x * (1/2) ^ t s počáteční hodnotou x, t jako "čas" / "poločas rozpadu" a y jako konečná částka. Odpověď najdete ve vzorci: y = 381 * (1/2) ^ (15/75) => y = 381 * 0,87055056329 => y = 331,679764616 Odpověď je přibližně 331,68
Poločas rozpadu určitého radioaktivního materiálu je 85 dnů. Počáteční množství materiálu má hmotnost 801 kg. Jak píšete exponenciální funkci, která modeluje rozpad tohoto materiálu a kolik radioaktivního materiálu zůstává po 10 dnech?
Nechť m_0 = "Počáteční hmotnost" = 801kg "at" t = 0 m (t) = "Hmotnost v čase t" "Exponenciální funkce", m (t) = m_0 * e ^ (kt) ... (1) "kde" k = "konstanta" "Poločas rozpadu" = 85 dní => m (85) = m_0 / 2 Teď, když t = 85 dní, pak m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) Zadání hodnoty m_0 a e ^ kv (1) dostaneme m (t) = 801 * 2 ^ (- t / 85) Toto je funkce, kterou lze také zapsat v exponenciálním tvaru jako m (t) = 801 * e ^ (- (tlog2) / 85
Celkové náklady na 5 knih, 6 per a 3 kalkulačky jsou $ 162. Pero a kalkulačka stojí $ 29 a celkové náklady na knihu a dvě pera jsou 22 dolarů. Najděte celkové náklady na knihu, pero a kalkulačku?
$ 41 Zde 5b + 6p + 3c = $ 162 ........ (i) 1p + 1c = $ 29 ....... (ii) 1b + 2p = $ 22 ....... (iii) kde b = knihy, p = pero a c = kalkulačky od (ii) 1c = $ 29 - 1p a od (iii) 1b = $ 22 - 2p Nyní vložte tyto hodnoty c & b do eqn (i) So, 5 ($ 22 - 2p) + 6p + 3 ($ 29-p) = $ 162 rarr $ 110-10p + 6p + $ 87-3p = $ 162 rarr 6p-10p-3p = $ 162- $ 110- $ 87 rarr -7p = - $ 35 1p = $ 5 dal hodnotu p v eqn (ii) 1p + 1c = $ 29 $ 5 + 1c = $ 29 1c = $ 29- $ 5 = $ 24 1c = $ 24 dal hodnotu pv eqn (iii) 1b + 2p = $ 22 1b + $ 2 * 5 = $ 22 1b = $ 12 1b + 1p + 1c = $ 12 + $ 5 + $ 24 = $ 41