Odpovědět:
Rychlost
Vysvětlení:
Nejdříve musíme najít posunutí objektu.
Počáteční bod je
Takže pro nalezení nejmenšího posunu používáme vzorec
Vezmeme-li počáteční body jako
Celkový čas potřebný pro tento tranzit je nyní
Rychlost objektu v tomto tranzitu by tedy byla
Předpokládejme, že během zkušební jízdy dvou aut jede jedno auto 248 mil ve stejnou dobu, kdy druhé auto putuje 200 mil. Pokud je rychlost jednoho auta 12 mil za hodinu rychlejší než rychlost druhého vozu, jak zjistíte rychlost obou vozů?
První auto jede rychlostí s_1 = 62 mi / h. Druhé auto jede rychlostí s_2 = 50 mi / h. Nechť t je doba, po kterou auta jedou s_1 = 248 / t a s_2 = 200 / t Řekli jsme: s_1 = s_2 + 12 To je 248 / t = 200 / t + 12 rArr 248 = 200 + 12t rArr 12t = 48 rArr t = 4 s_1 = 248/4 = 62 s_2 = 200/4 = 50
Jaká je rychlost objektu, který putuje z (1, -2, 3) do (-5, 6, 7) během 4 s?
2.693m // s Vzdálenost mezi 2 danými trojrozměrnými body může být nalezena z normální euklidovské metriky v RR ^ 3 takto: x = d ((1, -2,3); (- 5,6,7 )) = sqrt ((1 - (- 5)) ^ 2 + (- 2-6) ^ 2 + (3-7) ^ 2) = sqrt (36 + 64 + 16 = sqrt116m, (za předpokladu, že jednotky SI jsou použitá rychlost by tedy byla rychlost změny vzdálenosti a daná v = x / t = sqrt116 / 4 = 2,693m / s.
Během 6 měsíců prodávala pekárna v průměru 29 koláčů denně. Počet jablečných koláčů, které prodávali, byl o čtyři méně než dvojnásobek počtu borůvkových koláče, které prodávali. Kolik borůvkových koláčů prodávala pekárna průměrný prodej za den během tohoto období?
Nechť x je průměrný počet prodaných jablečných koláče a y je průměrný počet borůvkových koláče prodávaných denně v pekárně. x + y = 29 x = 2y - 4 2y - 4 + y = 29 3y = 33 y = 11 Pekárna prodávala průměrně 11 borůvkových koláčů denně. Doufejme, že to pomůže!