Jak vyřešit kubickou rovnici: 9x ^ 3 + 3x ^ 2 -23x +4 = 0?

Jak vyřešit kubickou rovnici: 9x ^ 3 + 3x ^ 2 -23x +4 = 0?
Anonim

Odpovědět:

# x = -1,84712709 "nebo" 0,18046042 "nebo" 4/3 #

Vysvětlení:

# "Použít racionální teorii kořenů."

# "Hledáme kořeny tvaru" pm p / q ", s" #

#p "dělitel 4 a" q "dělitel 9." #

# "Nacházíme" x = 4/3 "jako racionální kořen." #

# "Takže" (3x - 4) "je faktor, rozdělíme ho:" #

# 9 x ^ 3 + 3 x ^ 2 - 23 x + 4 = (3 x - 4) (3 x ^ 2 + 5 x - 1) #

# "Řešení zbývající kvadratické rovnice dává ostatním kořenům:" #

# 3 x ^ 2 + 5 x - 1 = 0 #

# "disk" 5 ^ 2 + 4 * 3 = 37 #

# => x = (-5 pm sqrt (37)) / 6 #

# => x = -1,84712709 "nebo" 0,18046042.