Jak se dělí (i + 3) / (-3i +7) v trigonometrickém tvaru?
0.311 + 0.275i Nejprve přepíšu výrazy ve tvaru + bi (3 + i) / (7-3i) Pro komplexní číslo z = a + bi, z = r (costheta + isintheta), kde: r = sqrt (a ^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Zavolejme 3 + i z_1 a 7-3i z_2. Pro z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0.32 ^ c z_1 = sqrt (10) (cos (0.32) + isin (0.32)) Pro z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0,40 ^ c Jelikož však 7-3i je v kvadrantu 4, musíme získat kladný úhel ekv
Jaká je rovnice ve tvaru svahu ve tvaru svahu a úsek svahu ve tvaru čáry dané strmosti: 3/4, úsek y: -5?
Bod-Slope forma rovnice je barva (karmínová) (y + 5 = (3/4) * (x - (20/3)) Formy lineární rovnice: Slope - intercept: y = mx + c Bod - Sklon: y - y_1 = m * (x - x_1) Standardní forma: ax + by = c Obecná forma: ax + by + c = 0 Dáno: m = (3/4), y intercept = -5:. y = (3 / 4) x - 5 Když x = 0, y = -5 Když y = 0, x = 20/3 Bodová rovnice tvaru rovnice je barva (rudá) (y + 5 = (3/4) * (x - (20/3)) #
Jaká je rovnice ve tvaru svahu ve tvaru svahu a úsek svahu ve tvaru čáry dané sklonem -2, (3, 1)?
(y-1) = -2 (x-3) y = -2x + 7 Forma svahu je: (y-y_1) = m (x-x_1) (y-1) = -2 (x-3) převést jej na úsek svahu: y-1 = -2x + 6 y = -2x + 7 graf {y = -2x + 7 [-7,38, 12,62, -0,96, 9,04]}