Odpovědět:
Vysvětlení:
Nejprve přepište jako:
Pak jako:
Budeme používat:
Tak dostaneme:
Součet číslic třímístného čísla je 15. Číslice jednotky je menší než součet ostatních číslic. Desítková číslice je průměrem ostatních číslic. Jak zjistíte číslo?
A = 3 ";" b = 5 ";" c = 7 Dáno: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Zvažte rovnici (3) -> 2b = (a + c) Zapište rovnici (1) jako (a + c) + b = 15 Substitucí se to stane 2b + b = 15 barev (modrá) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Nyní máme: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 ............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Jak zjednodušíte f (theta) = sin4theta-cos6theta na goniometrické funkce jednotky theta?
Sin (theta) ^ 6-15kos (theta) ^ 2sin (theta) ^ 4-4cos (theta) sin (theta) ^ 3 + 15cos (theta) ^ 4sin (theta) ^ 2 + 4cos (theta) ^ 3sin (theta) ) -cos (theta) ^ 6 Použijeme následující dvě identity: sin (A + -B) = sinAcosB + -cosAsinB cos (A + -B) = cosAcosB sinAsinB sin (4theta) = 2sin (2theta) cos (2theta) = 2 (2sin (theta) cos (theta)) (cos ^ 2 (theta) -sin ^ 2 (theta)) = 4sin (theta) cos ^ 3 (theta) -4sin ^ 3 (theta) cos (theta) cos (6th) = cos2 (3theta) -sin2 (3theta) = (cos (2theta) cos (theta) -sin (2theta) sin (theta)) ^ 2- (sin (2theta) cos (theta) + cos (2theta) sin (theta) ^ 2 = (cos (theta) (cos ^
Produkt kladného čísla dvou číslic a číslice v místě jeho jednotky je 189. Pokud je číslice v desetinném místě dvojnásobek číslice v místě jednotky, jaká je číslice v místě jednotky?
3. Všimněte si, že dvě číslice nejsou. splňující druhou podmínku (podmínka) jsou 21,42,63,84. Mezi těmito, od 63xx3 = 189, jsme dospěli k závěru, že dvoumístné číslo č. je 63 a požadovaná číslice v místě jednotky je 3. Pro vyřešení problému metodicky předpokládejme, že číslice deseti je x, a číslo jednotky, y. To znamená, že dvě číslice č. je 10x + y. "1 ^ (st)" cond. "RArr (10x + y) y = 189. "2" (nd) "cond." RArr x = 2y. Substituce x = 2y in (10x + y) y = 189, {10 (2y) + y} = 189. :. 21y ^ 2 =