Jaká je forma vrcholu y = -x ^ 2 + 5x?

Jaká je forma vrcholu y = -x ^ 2 + 5x?
Anonim

Odpovědět:

# (x - 5/2) ^ 2 - 25/4 #

Vysvětlení:

Chcete-li najít formu vertexu, musíte dokončit náměstí:

# -x ^ 2 + 5x #

# = x ^ 2 - 5x #

# = x ^ 2 - 5x + (5/2) ^ 2 - (5/2) ^ 2 #

# = (x - 5/2) ^ 2 - (5/2) ^ 2 #

# = (x - 5/2) ^ 2 - 25/4 #

Odpovědět:

#y = - (x-5/2) ^ 2 + 25/4 #

Vysvětlení:

Vzhledem k

# y = -x ^ 2 + 5x #

Vrchol

#x = (- b) / (2a) = (- 5) / (- 1xx2) = 5/2 #

V # x = 5/2 #;

#y = - (5/2) ^ 2 + 5 (5/2) = - 25/4 + 25/2 = (- 25 + 50) / 4 = 25/4 #

Vrchol #(5/2, 25/4)#

Vrcholová forma kvadratické rovnice je -

# y = a (x-h) ^ 2 + k #

Kde -

# a = -1 # - součinitel # x ^ 2 #

# h = 5/2 # - x - souřadnice vrcholu

# k = 25/4 # - y - souřadnice vrcholu

Nahraďte tyto hodnoty ve vzorci

# y = -1 (x-5/2) ^ 2 + 25/4 #

#y = - (x-5/2) ^ 2 + 25/4 #