Jedním ze způsobů, jak to vidět, je, aby byl každý výraz nejprve plně faktor:
Oba tyto termíny obsahují alespoň jeden faktor
Součet dvou polynomů je 10a ^ 2b ^ 2-9a ^ 2b + 6ab ^ 2-4ab + 2. Pokud jeden doplněk je -5a ^ 2b ^ 2 + 12a ^ 2b-5, jaký je další přídavek?
Viz níže uvedený postup řešení: Pojďme zavolat druhý dodatek: x Můžeme pak napsat: x + (-5a ^ 2b ^ 2 + 12a ^ 2b - 5) = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 Chcete-li najít druhý doplněk, můžeme vyřešit x: x + (-5a ^ 2b ^ 2 + 12a ^ b - 5) - (-5a ^ 2b ^ 2 + 12a ^ 2b - 5) = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 - (-5a ^ 2b ^ 2 + 12a ^ 2b - 5) x + 0 = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 + 5a ^ 2b ^ 2 - 12a ^ 2b + 5 x = 10a ^ 2b ^ 2 - 9a ^ 2b + 6ab ^ 2 - 4ab + 2 + 5a ^ 2b ^ 2 - 12a ^ 2b + 5 Můžeme nyní seskupovat a kombinovat podobné výrazy: x = 10a ^ 2b ^ 2 + 5a ^
Nechť 5a + 12b a 12a + 5b jsou boční délky pravoúhlého trojúhelníku a 13a + kb je přepona, kde a, b a k jsou kladná celá čísla. Jak zjistíte nejmenší možnou hodnotu k a nejmenší hodnoty a a b pro k?
K = 10, a = 69, b = 20 Pythagorovy věty, máme: (13a + kb) ^ 2 = (5a + 12b) ^ 2 + (12a + 5b) ^ 2 To je: 169a ^ 2 + 26kab + k ^ 2b ^ 2 = 25a ^ 2 + 120ab + 144b ^ 2 + 144a ^ 2 + 120ab + 25b ^ 2 barva (bílá) (169a ^ 2 + 26kab + k ^ 2b ^ 2) = 169a ^ 2 + 240ab + 169b ^ 2 Odečtěte levou stranu od obou konců a zjistěte: 0 = (240-26k) ab + (169-k ^ 2) b ^ 2 barva (bílá) (0) = b ((240-26k) a + ( 169-k ^ 2) b) Protože b> 0 požadujeme: (240-26k) a + (169-k ^ 2) b = 0 Pak protože a, b> 0 požadujeme (240-26k) a (169-k ^ 2) mít opačné znaky. Když k v [1, 9] jsou kladné jak 240-26k, tak 169-k
Jaká je faktická forma ^ 2 + 12a 108?
(a + 18) (a-6)> "faktory faktoru - 108, které jsou součtem + 12 jsou + 18 a - 6" a ^ 2 + 12a-108 = (a + 18) (a-6)