Odpovědět:
Míra změny je
Vysvětlení:
Vzhledem k přímce je rychlost změny y na jednotku x stejná jako sklon čáry.
Rovnice přímky mezi dvěma body
V tomto příkladu máme body:
Proto je v tomto příkladu míra změny
Škola Krisha je vzdálená 40 mil. Jízda rychlostí 40 mph (míle za hodinu) pro první polovinu vzdálenosti, pak 60 mph pro zbytek vzdálenosti. Jaká byla její průměrná rychlost pro celou cestu?
V_ (avg) = 48 "mph" Pojďme to rozdělit do dvou případů, první a druhé poloviční cesty Řídí vzdálenost s_1 = 20 rychlostí v_1 = 40 Řídí vzdálenost s_2 = 20 s rychlostí v_2 = 60 Čas pro každý případ musí být dán t = s / v Doba potřebná k řízení první poloviny: t_1 = s_1 / v_1 = 20/40 = 1/2 Doba potřebná k řízení druhé poloviny: t_2 = s_2 / v_2 = 20/60 = 1/3 Celková vzdálenost a čas musí být vždy s_ "celkový" = 40 t_ "celkový" = t_1 + t_2 = 1/2
Voda unikající z obrácené kónické nádrže rychlostí 10 000 cm3 / min a zároveň je voda čerpána do nádrže konstantní rychlostí Pokud má nádrž výšku 6 m a průměr nahoře je 4 m a pokud hladina vody stoupá rychlostí 20 cm / min, když je výška vody 2 m, jak zjistíte, jakou rychlostí se voda čerpá do nádrže?
Nechť V je objem vody v nádrži v cm ^ 3; nechť h je hloubka / výška vody v cm; a r je poloměr povrchu vody (nahoře) v cm. Vzhledem k tomu, že nádrž je obrácený kužel, tak i množství vody. Protože nádrž má výšku 6 ma poloměr v horní části 2 m, podobné trojúhelníky znamenají, že frac {h} {r} = frac {6} {2} = 3 tak, že h = 3r. Objem invertovaného kužele vody je pak V = f {1} {3} r = {r} {3}. Nyní rozlišujeme obě strany s ohledem na čas t (v minutách), abychom získali frac {dV} {dt} = 3 pi r ^ {2} cdrac {dr} {dt} (pravidlo řetězu se
Jaká je rychlost změny šířky (ve stopách / s), když je výška 10 stop, pokud výška v tomto okamžiku klesá rychlostí 1 ft / sec.A obdélník má jak měnící se výšku, tak měnící se šířku , ale výška a šířka se mění tak, že plocha obdélníku je vždy 60 čtverečních stop?
Rychlost změny šířky s časem (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" So (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) So (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Takže když h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"