Důvod závisí na definici
Preferuji:
Definice:
Základní větou kalkulu je:
Z toho a pravidla řetězu také získáváme
Na intervalu, který vylučuje
Jak odpovědět na tyto otázky pomocí integrace?
Plocha je = (32/3) u ^ 2 a objem je = (512 / 15pi) u ^ 3 Začněte vyhledáním průsečíku s osou x y = 4x-x ^ 2 = x (4-x) = 0 Proto x = 0 a x = 4 Plocha je dA = ydx A = int_0 ^ 4 (4x-x ^ 2) dx = [2x ^ 2-1 / 3x ^ 3] _0 ^ 4 = 32-64 / 3 -0 = 32 / 3u ^ 2 Objem je dV = piy ^ 2dx V = piint_0 ^ 4 (4x-x ^ 2) ^ 2dx = piint_0 ^ 4 (16x ^ 2-8x ^ 3 + x ^ 4) dx = pi [16 / 3x ^ 3-2x ^ 4 + 1 / 5x ^ 5] _04 = pi (1024 / 3-512 + 1024 / 5-0) = pi (5120 / 15-7680 / 15 + 3072/15) = pi (512/15)
Integrace pomocí substituce intsqrt (1 + x ^ 2) / x dx? Jak mohu vyřešit tuto otázku, prosím, pomozte mi?
Sqrt (1 + x ^ 2) -1 / 2ln (abs (sqrt (1 + x ^ 2) +1)) + 1 / 2ln (abs (sqrt (1 + x ^ 2) -1) + C Použít u ^ 2 = 1 + x ^ 2, x = sqrt (u ^ 2-1) 2u (du) / (dx) = 2x, dx = (udu) / x intsqrt (1 + x ^ 2) / xdx = int ( usqrt (1 + x ^ 2)) / x ^ 2du intu ^ 2 / (u ^ 2-1) du = int1 + 1 / (u ^ 2-1) du 1 / (u ^ 2-1) = 1 / ((u + 1) (u-1) = A / (u + 1) + B / (u-1) 1 = A (u-1) + B (u + 1) u = 1 1 = 2B, B = 1/2 u = -1 1 = -2A, A = -1 / 2 int1-1 / (2 (u + 1)) + 1 / (2 (u-1)) du = u-1 / 2ln (abs (u + 1)) + 1 / 2ln (abs (u-1)) + C Zadání u = sqrt (1 + x ^ 2) zpět do: sqrt (1 + x ^ 2) -1 / 2ln ( abs (sqrt (1 + x ^ 2) +1)) + 1 / 2l
Jaká je integrace 1 / log (sqrt (1-x))?
Zde je log ln. Odpověď: (2sum ((- 1) ^ (n-1)) / n (x / ln (1-x)) ^ n, n = 1, 2, 3, ..oo) + C .. = 2ln (1 + x / (ln (1-x)) + C, | x / (ln (1-x)) | <1 Použijte intu dv = uv-intv du, postupně. inti / (lnsqrt (1-x) dx = 2int1 / ln (1-x) dx = 2 [x / ln (1-x) -intxd (1 / ln (1-x))] = 2 [[x / ln (1-x) -intx / (ln (1-x)) ^ 2 dx] = 2 [[x / ln (1-x) -int1 / (ln (1-x)) ^ 2 d (x ^ 2/2)] a tak dále. Konečná nekonečná řada se jeví jako odpověď.Jsem zatím studovat interval konvergence pro sérii, od teď | x / (ln (1-x)) | <1 Explicitní interval pro x, z této nerovnosti, reguluje interval pro j