Odpovědět:
Vysvětlení:
Pro radikální funkce nemůžeme mít méně než
V tomto případě to víme
Tak to víme
Doména by tedy byla všemi hodnotami
Co je to (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bereme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 + sqrt3) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (zrušit (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - zrušit (2sqrt15) -5 + 2 * 3 + zrušit (sqrt15)) / (12-5) = ( -10 + 12) / 7 =
Co je doménou kombinované funkce h (x) = f (x) - g (x), je-li doména f (x) = (4,4,5] a doména g (x) je [4, 4,5 )?
Doména je D_ {f-g} = (4,4,5). Viz vysvětlení. (f-g) (x) lze vypočítat pouze pro ty x, pro které jsou definovány jak f, tak i g. Můžeme tedy napsat: D_ {f-g} = D_fnnD_g Zde máme D_ {f-g} = (4,4,5] nn [4,4,5] = (4,4,5)
Jak to zjednodušíte (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Obrovské matematické formátování ...> barva (modrá) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)) = barva (červená) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) / (sqrt (a) +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1)) = barva ( modrá) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -