Odpovědět:
Za předpokladu pouze primárních (tj. Pozitivních) odmocnin
Vysvětlení:
Trojnásobek druhé odmocniny 2 více než neznámého čísla je stejný jako dvojnásobek druhé odmocniny 7 více než dvojnásobek neznámého čísla. Najděte číslo?
3sqrt2-2sqrt7 Nechť n je neznámé číslo. 3sqrt2 + n = 2sqrt7 + 2n 3sqrt2 = 2sqrt7 + n n = 3sqrt2-2sqrt7
Jaká je druhá odmocnina 7 + 2 odmocniny 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) První věc, kterou můžeme udělat, je zrušit kořeny na těch, které mají stejné pravomoci. Protože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pro libovolné číslo, můžeme říci, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyní lze 7 ^ 3 přepsat jako 7 ^ 2 * 7, a že 7 ^ 2 se může dostat z kořene! Totéž platí pro 7 ^ 5, ale je přepsáno jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7
Jaký je součet druhé odmocniny 72 + druhá odmocnina 50?
11sqrt2> "pomocí" barvy (modrá) "zákon radikálů" • barva (bílá) (x) sqrtaxxsqrtbhArrsqrt (ab) "zjednodušení každého radikálu" sqrt72 = sqrt (36xx2) = sqrt36xxsqrt2 = 6sqrt2 sqrt50 = sqrt (25xx2) = sqrt25xxsqrt2 = sqrt25xxsqrt2 = 5sqrt2 rArrsqrt72 + sqrt50 = 6sqrt2 + 5sqrt2 = 11sqrt2