Odpovědět:
Vysvětlení:
# "počáteční prohlášení je" ypropx #
# "převést na rovnici vynásobenou k konstanta" #
# "of variation" #
# rArry = kx #
# "najít k použít danou podmínku" #
# y = 21 "když" x = 9 #
# y = kxrArrk = y / x = 21/9 = 7/3 #
# "rovnice je" barva (červená) (bar (ul (| barva (bílá) (2/2) barva (černá) (y = 7 / 3x = (7x) / 3) barva (bílá) (2/2) |))) #
# "když" x = -6 "pak" #
# y = 7 / 3xx-6 = -14 #
Předpokládejme, že r se mění přímo jako p a inverzně jako q², a že r = 27, když p = 3 a q = 2. Jak najdete r, když p = 2 a q = 3?
Když p = 2; q = 3; r = 8 rpropp; r prop 1 / q ^ 2: .r prop p / q ^ 2 nebo r = k * p / q ^ 2; r = 27; p = 3 a q = 2:. 27 = k * 3/2 ^ 2 nebo k = 27 * 4/3 = 36Vyjádření variační rovnice je r = 36 * p / q ^ 2:. q = 3; r = 36 * 2/3 ^ 2 = 8 [Ans]
Předpokládejme, že y se mění přímo jako x a y = 27, když x = 3, jak zjistíte x, když y = 45?
X = 5> "počáteční příkaz je" ypropx "k převodu na rovnici násobenou k konstantou" "variace" rArry = kx "k nalezení k použijte danou podmínku" y = 27 "když" x = 3 y = = kxrArrk = y / x = 27/3 = 9 "rovnice" je barva (červená) (bar (ul (| barva (bílá) (2/2) barva (černá) (y = 9x) barva (bílá) (2 / 2) |))) "když" y = 45 "pak" 45 = 9xrArrx = 45/9 = 5
'L se mění společně jako a druhá odmocnina b, a L = 72 když a = 8 a b = 9. Najít L když a = 1/2 a b = 36? Y se mění společně jako kostka x a druhá odmocnina w, a Y = 128, když x = 2 a w = 16. Najděte Y, když x = 1/2 a w = 64?
L = 9 "a" y = 4> "počáteční příkaz je" Lpropasqrtb "k převodu na rovnici násobenou k konstantou" "variace" rArrL = kasqrtb "k nalezení k použijte dané podmínky" L = 72 ", když "a = 8" a "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" rovnice je "barva (červená) (bar (ul (| barva (bílá) ( 2/2) barva (černá) (L = 3asqrtb) barva (bílá) (2/2) |)) "když" a = 1/2 "a" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 barva (modrá) "