Jaké jsou hranice x, pokud (2x-1) / (x + 5)> = (x + 2) / (x + 3)?

Jaké jsou hranice x, pokud (2x-1) / (x + 5)> = (x + 2) / (x + 3)?
Anonim

Odpovědět:

#x = -5, x = -3, x = 1-sqrt (14), x = 1 + sqrt (14) #

#> = "dochází pro" x <-5 "a" x> = 1 + sqrt (14) "a" # #

# -3 <x <= 1-sqrt (14) "." #

Vysvětlení:

# => (2x-1) / (x + 5) - (x + 2) / (x + 3)> = 0 #

# => ((2x-1) (x + 3) - (x + 2) (x + 5)) / ((x + 5) (x + 3))> = 0 #

# => (2x ^ 2 + 5x-3-x ^ 2-7x-10) / ((x + 5) (x + 3))> = 0 #

# => (x ^ 2 -2x-13) / ((x + 5) (x + 3))> = 0 #

# => ((x - 1 - sqrt (14)) (x - 1 + sqrt (14)) / ((x + 5) (x + 3))> = 0 #

# "Máme následující nuly v pořadí podle velikosti:" #

# …. -5 …. -3 …. 1-sqrt (14) …. 1 + sqrt (14) ….. #

#-----------0+++#

#-------0+++++++#

#-----0+++++++++#

#--0++++++++++++#

#'========================='#

#++0---0++0---0+++#

# "Vidíme"> = 0 "pro" x <-5 "a" x> = 1 + sqrt (14) "a" # #

# -3 <x <= 1-sqrt (14) "." #