Odpovědět:
Vysvětlení:
Všimněte si, že jste dostali dvě rovnice, které se zabývají hodnotou
#y = x ^ 2 - 6 "" # a# "" y = -2x-3 #
Aby tyto rovnice byly pravdivé, musíte mít
# x ^ 2 - 6 = -2x-3 #
Uspořádat tuto rovnici do klasické kvadratické formy
# x ^ 2 + 2x -3 = 0 #
Můžete použít kvadratický vzorec k určení dvou řešení
#x_ (1,2) = (-2 + - sqrt (2 ^ 2 - 4 * 1 * (-3)) / (2 * 1) #
#x_ (1,2) = (-2 + - sqrt (16)) / 2 = (-2 + - 4) / 2 = {(x_1 = (-2-4) / 2 = -3), (x_2 = (-2 + 4) / 2 = 1):} #
Nyní vezměte tyto hodnoty
- když
# x = -3 # , ty máš
#y = (-3) ^ 2 - 6 = 3 #
- když
# x = 1 # , ty máš
#y = 1 ^ 2 - 6 = -5 #
Takže dvě možné sady řešení jsou
Diskriminační kvadratická rovnice je -5. Která odpověď popisuje počet a typ řešení rovnice: 1 komplexní řešení 2 reálná řešení 2 komplexní řešení 1 skutečné řešení?
Vaše kvadratická rovnice má 2 komplexní řešení. Diskriminační kvadratická rovnice nám může poskytnout pouze informaci o rovnici tvaru: y = ax ^ 2 + bx + c nebo parabola. Protože nejvyšší stupeň tohoto polynomu je 2, nesmí mít více než 2 řešení. Diskriminační je prostě látka pod symbolem druhé odmocniny (+ -sqrt ("")), ale nikoli samotný symbol druhé odmocniny. + -sqrt (b ^ 2-4ac) Pokud je diskriminační, b ^ 2-4ac, menší než nula (tj. jakékoliv záporné číslo), pak byste měli záporný symbol p
X - y = 3 -2x + 2y = -6 Co lze říci o systému rovnic? Má jedno řešení, nekonečně mnoho řešení, žádné řešení nebo 2 řešení.
Nekonečně mnoho Máme dvě rovnice: E1: x-y = 3 E2: -2x + 2y = -6 Zde je naše volba: Pokud můžu udělat E1 přesně E2, máme dva výrazy stejné čáry a tak existuje nekonečně mnoho řešení. Pokud můžu udělat výrazy x a y v E1 a E2 stejné, ale skončit s různými čísly, které jsou stejné, čáry jsou paralelní, a proto neexistují žádná řešení.Pokud nemohu udělat ani jednu z nich, pak mám dvě různé linie, které nejsou paralelní, takže někde bude bod průniku. Neexistuje žádný způsob, jak mít dvě rovné čár
Použijte diskriminační k určení počtu a typu řešení, která má rovnice? x ^ 2 + 8x + 12 = 0 skutečné řešení B. skutečné řešení C. dvě racionální řešení D. dvě iracionální řešení
C. dvě racionální řešení Řešení kvadratické rovnice a * x ^ 2 + b * x + c = 0 je x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In uvažovaný problém, a = 1, b = 8 a c = 12 nahrazení, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 nebo x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 a x = (-8 - 4) / 2 x = (- 4) / 2 a x = (-12) / 2 x = - 2 a x = -6