Odpovědět:
Vysvětlení:
Budete muset tento problém vypnout.
Zjednodušte je
Kombinovat jako termíny.
Odpovědět:
Vysvětlení:
Odpovědět:
Vysvětlení:
Rozbalit každý výraz:
Přidání podobných výrazů:
Řešit (2 + sqrt3) cos theta = 1-sin theta?
Rarrx = (6n-1) * (pi / 3) rarrx = (4n + 1) pi / 2 Kde nrarrZ rarr (2 + sqrt (3)) cosx = 1-sinx rarrtan75 ^ @ * cosx + sinx = 1 rarr ( sin75 ^ @ * cosx) / (cos75 ^ @) + sinx = 1 rarrsinx * cos75 ^ @ + cosx * sin75 ^ @ = cos75 ^ @ = sin (90 ^ @ - 15 ^ @) = sin15 ^ @ rarrsin (x + 75 ^ @) - sin15 ^ @ = 0 rarr2sin ((x + 75 ^ @ - 15 ^ @) / 2) cos ((x + 75 ^ @ + 15 ^ @) / 2) = 0 rarrsin ((x + 60) ^ @) / 2) * cos ((x + 90 ^ @) / 2) = 0 Buď rarrsin ((x + 60 ^ @) / 2) = 0 rarr (x + 60 ^ @) / 2 = npi rarrx = 2npi-60 ^ = 2npi-pi / 3 = (6n-1) * (pi / 3) nebo, cos ((x + 90 ^ @) / 2) = 0 rarr (x + 90 ^ @) / 2 = (2n + 1) pi / 2 rarrx = 2
Co je to 2sqrt3 + 2sqrt3 - 3sqrt3?
= barva (modrá) (barva sqrt3 (modrá) (2sqrt3 + 2sqrt3) - 3sqrt3 = barva (modrá) (4sqrt3) - 3sqrt3 = barva (modrá) (sqrt3
Řešit x²-3 <3. To vypadá jednoduše, ale nemohl jsem dostat správnou odpověď. Odpověď je (- 5, -1) U (1, 5). Jak řešit tuto nerovnost?
Řešením je, že nerovnost by měla být abs (x ^ 2-3) <barva (červená) (2) Jako obvykle s absolutními hodnotami se dělí na případy: Případ 1: x ^ 2 - 3 <0 Pokud x ^ 2 - 3 <0 pak abs (x ^ 2-3) = - (x ^ 2-3) = -x ^ 2 + 3 a naše (opravená) nerovnost se stává: -x ^ 2 + 3 <2 Přidat x ^ 2-2 obě strany se dostanou 1 <x ^ 2 So x v (-oo, -1) uu (1, oo) Ze stavu případu máme x ^ 2 <3, takže xv (-sqrt (3), sqrt (3)) Proto: xv (-sqrt (3), sqrt (3)) nn ((-oo, -1) uu (1, oo)) = (-sqrt (3), -1) uu (1 , sqrt (3)) Případ 2: x ^ 2 - 3> = 0 Pokud x ^ 2 - 3>