Jak se dělí (2i -4) / (7 i -2) v trigonometrickém tvaru?

Jak se dělí (2i -4) / (7 i -2) v trigonometrickém tvaru?
Anonim

Odpovědět:

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47,48^@+i*sin 47,48 ^ @ #

Vysvětlení:

Řešení:

# 2i-4 = #

#sqrt (4 + 16) cos (tan ^ -1 (-1/2) + i * sin (tan ^ -1 (-1/2)) # #

#sqrt (20) cos (tan ^ -1 (-1/2) + i * sin (tan ^ -1 (-1/2)) # #

# 7i-2 = #

#sqrt (4 + 49) cos (tan ^ -1 (-7/2) + i * sin (tan ^ -1 (-7/2)) # #

# (2i-4) / (7i-2) = #

#sqrt (20) / sqrt (53) cos (tan ^ -1 (-1/2) -tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2) -tan ^ -1 (-1/2)) #

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47,48^@+i*sin 47,48 ^ @ #

Bůh žehnej ….. doufám, že vysvětlení je užitečné.