Odpovědět:
Nejdříve vyhledejte sklon čáry mezi těmito body.
Vysvětlení:
Vzorec pro sklon m =
m =
m =
m =
m =
Sklon čáry kolmé k této rovině má sklon, který je zápornou převrácenou hodnotou m.
Takže nový svah je
Cvičení:
- Zde je graf lineární funkce. Najděte sklon čáry kolmé k této.
graf {y = 1 / 2x + 1 -10, 10, -5, 5} eh rovnice kolmých čar
- Níže jsou lineární funkční rovnice nebo lineární funkce. Najděte rovnice čar kolmých k těmto funkcím:
a) 2x + 5y = -3
b) y - 2 =
c) Má průsečík x (2,0) a průsečík y (-5,0).
Hodně štěstí!
Jaký je sklon jakékoliv přímky kolmé k přímce procházející (5,0) a (-4, -3)?
Sklon čáry kolmé k přímce procházející (5,0) a (-4, -3) bude -3. Sklon kolmé čáry bude roven záporné inverzi sklonu původní čáry. Musíme začít hledáním svahu původní linie. Můžeme to najít tak, že vezmeme rozdíl v y dělený rozdílem v x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3 Nyní najděte sklon kolmé čáry, vezmeme pouze negativní inverzi 1/3: -1 / (1/3) = - 1 * 3/1 = -3 To znamená, že sklon čáry kolmé k původnímu je -3.
Jaký je sklon jakékoliv přímky kolmé k přímce procházející (0,0) a (-1,1)?
1 je sklon libovolné přímky kolmé k přímce. Sklon stoupá nad běh, (y_2 -y_1) / (x_2-x_1). Sklon kolmý na libovolnou čáru je negativní. Svah této přímky je negativní, takže kolmá na ni by byla 1.
Jaký je sklon jakékoliv přímky kolmé k přímce procházející (0,6) a (18,4)?
Sklon jakékoli přímky kolmé k přímce procházející (0,6) a (18,4) je 9 Sklon čáry procházející (0,6) a (18,4) je m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 Produkt svahů kolmých čar je m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. Sklon jakékoli čáry kolmé k přímce procházející (0,6) a (18,4) je tedy 9 [Ans]