Odpovědět:
Vysvětlení:
Sklon, který je kolmý na danou čáru, by byl inverzní sklon dané čáry
Vzorec pro sklon čáry založený na dvou souřadnicových bodech je
Souřadnicové body
Svah je
kolmý sklon by byl reciproční (-1 / m)
Jaký je sklon jakékoliv přímky kolmé k přímce procházející (5,0) a (-4, -3)?
Sklon čáry kolmé k přímce procházející (5,0) a (-4, -3) bude -3. Sklon kolmé čáry bude roven záporné inverzi sklonu původní čáry. Musíme začít hledáním svahu původní linie. Můžeme to najít tak, že vezmeme rozdíl v y dělený rozdílem v x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3 Nyní najděte sklon kolmé čáry, vezmeme pouze negativní inverzi 1/3: -1 / (1/3) = - 1 * 3/1 = -3 To znamená, že sklon čáry kolmé k původnímu je -3.
Jaký je sklon jakékoliv přímky kolmé k přímce procházející (0,0) a (-1,1)?
1 je sklon libovolné přímky kolmé k přímce. Sklon stoupá nad běh, (y_2 -y_1) / (x_2-x_1). Sklon kolmý na libovolnou čáru je negativní. Svah této přímky je negativní, takže kolmá na ni by byla 1.
Jaký je sklon jakékoliv přímky kolmé k přímce procházející (0,6) a (18,4)?
Sklon jakékoli přímky kolmé k přímce procházející (0,6) a (18,4) je 9 Sklon čáry procházející (0,6) a (18,4) je m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 Produkt svahů kolmých čar je m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. Sklon jakékoli čáry kolmé k přímce procházející (0,6) a (18,4) je tedy 9 [Ans]