Jaká je hodnota (2 + root5) ^ 1/3 + (2-root5) ^ 1/3?

Jaká je hodnota (2 + root5) ^ 1/3 + (2-root5) ^ 1/3?
Anonim

Odpovědět:

Hodnota je #-2#

Vysvětlení:

Nechat # x = (2 + sqrt5) ^ (1/3) + (2-sqrt5) ^ (1/3) # pak

# x ^ 3 = {(2 + sqrt5) ^ (1/3) + (2-sqrt5) ^ (1/3)} ^ 3 #

Připomínka:

# (a + b) ^ 3 = a ^ 3 + b ^ 3 + 3ab (a + b), a ^ 2-b ^ 2 = (a + b) (a-b) #

a nechte # a = (2 + sqrt5), b = (2-sqrt5):. ab = 4-5 = -1 #

#:. x ^ 3 = (2 + sqrt5) ^ (3 * 1/3) + (2-sqrt5) ^ (3 * 1/3) +3 (2 + sqrt5) (2-sqrt5) (2 + sqrt5) + 2-sqrt5) #

nebo # x ^ 3 = 2 + zrušit (sqrt5) + 2-zrušit (sqrt5) +3 (4-5) (2 + zrušit (sqrt5) + 2-zrušit (sqrt5)) #

nebo # x ^ 3 = 4 + 3 (-1) (4) nebo x ^ 3 = 4 -12 nebo x ^ 3 = -8 # nebo

#x = (-8) ^ (1/3) = -2 #. Hodnota je #-2# Ans